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The slow motion of a rigid particle in a second-order fluid 
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The purpose of the present paper is to reach some general conclusions on the motion of 
rigid particles in a homogeneous shear flow of a viscoelastic fluid. Under the basic 
assumption of nearly Newtonian slow flow, the creeping-motion equations for a 
second-order fluid with characteristic time constants K , J ~ )  and ~ d l l )  can be employed. It 
is shown that the ~ d ~ )  contributions to the hydrodynamic force F and couple G depend 
upon the hydrodynamic force, couple and stresslet which act upon the particle in a 
Newtonian fluid (termed Fl), G(l) and S1), respectively). Since this relation involves 
time derivatives of F(l) and G(l), a little reflexion is needed to realize that the modifica- 
tion of the classical Stokes law for steady translation in a quiescent fluid can have no 
~ f )  term. Since no results of such generality are possible for the contributions we 
focus attention on transversely isotropic particles. Employing the concept of material 
tensors, the symmetry of such particles dictates the form these tensors adopt. This 
alone is sufficient to show that sedimentation in a quiescent fluid is accompanied by a 
change in orientation until a stable terminal orientation is attained. Depending upon 
the type of particle only one of the two orientations, axis of symmetry parallel or 
perpendicular to the external force, is stable. Another result concerns two-dimensional 
shear flow, for which we show that the symmetry axis has to drift through various 
Jeffery orbits until an equilibrium orientation is reached. While the orbits C = 0 and 
C = 00 are equilibrium orbits for every transversely isotropic particle there may be 
a third such preferred orbit, which we denote by C*. In  order for these orbits to be stable 
certain restrictions have to hold, showing that the orbits C = 0 and C* cannot both 
be stable. For the special case of a rigid tridumbbell of axis ratio s the orbit C* does not 
exist. If s > 1 the drift for this particle is into the orbit C = 0 while for s < 1 it is into 
the orbit C = CQ. This agrees qualitatively quite well with experimental results obtained 
for rods and disks. No quantitative comparison is possible; the particle shape influences 
the result quantitatively owing to its effect on the combination of the fluid parameters 
K : ~ )  and 

1. Introduction 
The behaviour of isolated rigid particles submerged in a Newtonian fluid has received 

much attention in the literature. If the motion is sufficiently slow the hydrodynamic 
force as well as the couple relative to some point 0 inside the body can depend only 
linearly on the parameters of the problem. As long as the motion of the fluid can be 
approximated by a homogeneous shear flow, these parameters are the relative trans- 
lational velocity o,, the relative angular velocity d and a pure strain E. The tensors 
relating these parameters to the force and the couple are material tensors since apart 
from their dependence on the arbitrary choice of the point 0 they depend only upon the 

18 F L M  a2 



530 P .  Brunn 

exterior geometry of the particle surface. Any symmetries the body possesses reduces 
the number of independent coefficients in these tensors. In  this way some generally 
valid conclusions can be obtained. Examples of such conclusions include the settling of 
homogeneous transversely isotropic particles without variation of the initial orien- 
tation or the behaviour of such particles in simple shear. With the exception of certain 
very long bodies the rotation in such a flow is identical to that of some ellipsoid of 
revolution (Bretherton 1962). That is to say, the symmetry axis of a transversely iso- 
tropic particle rotates periodically around the vorticity axis without changing its 
orbit. 

A recent calculation by Leal (1975) shows that slender rod-like particles immersed 
in a second-order fluid behave differently. Not only do they attain a preferred orienta- 
tion by settling in a gravitational field but they also change their orbit in a two- 
dimensional shear flow until the particle axis is parallel to the vorticity axis (orbit 
constant C = 0). Experiments a t  low shear rates for rods agree with the latter result 
(Gauthier, Goldsmith & Mason 1971). These experiments also show that small disks 
change their orbit too. This time the axis of revolution drifts into the plane of the shear 
(orbit constant C = 00). Consequently, the question arises as to whether orbit drift 
(and possibly also the preferred terminal orientation in an external force field) is 
characteristic of all transversely isotropic particles suspended in a viscoelastic fluid. 

In  order to obtain an answer we assume the flow to be rheologically so slow that the 
stress tensor is related to the rate of strain via the constitutive equation of a second- 
order fluid. It may therefore be characterized by two time constants: K J ~ )  and ~J11 

(Giesekus 1963). Furthermore we confine our attention to homogeneous flows, i.e. 
flows for which the (undisturbed) velocity gradient is identically constant. Denoting 
by F(1), G(1) and S(1) the hydrodynamic force, couple and stresslet which are exerted 
upon the particle in a Newtonian fluid, the K & ~ )  contributions to the force F and couple 
G are shown in $ 2  to depend only upon F(U, G(l), S(l) and aF(l)/at or aG(l)/at, respec- 
tively. When particle inertia is neglected these time derivatives vanish for transversely 
isotropic particles, if the particles are either freely suspended or if the fluid is quiescent 
and a constant external force Fe is acting. 

For the ~ t l )  contributions to F and G we rely on the quadratic dependence of these 
quantities upon the parameters of the problem. Since this is the case the relation can 
again involve only intrinsic material tensors. And by confining our attention to trans- 
versely isotropic particles we can write down the forms these tensors adopt ($3) .  

On adding up all contributions we see that the centre of symmetry of a freely sus- 
pended transversely isotropic particle will always move with the local fluid velocity 
while its orientation will change depending upon the type of flow. For the important 
case of a two-dimensional shear flow the axis of symmetry will rotate periodically 
around the vorticity axis. In  doing so it continuously changes its orbit until it reaches 
an equilibrium orbit. Although the orbits C = 0 and C = 00 are equilibrium orbits for 
any transversely isotropic particle there may be a third such preferred orbit, called C*. 
Certain restrictions have to be met for these orbits to be stable. These arguments show 
that the orbits C = 0 and Cqcannot both be stable, so that for any given particle there 
can be at  most two stable equilibrium orientations. All this is demonstrated in $4, 
where we also reach the conclusion that a transversely isotropic particle subjected 
only to a force will in general rotate. In  a quiescent fluid the initial orientation will 
change until the particle attains its spin-free terminal state. In  this state the axis of 
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symmetry can be either parallel or perpendicular to the direction of the force, depend- 
ing upon the type of particle. 

In  order to be more specific about these general results a rigid tridumbbell with two 
axes equal is studied in detail ( $ 5 ) .  Employing the general transformation laws 
(appendix A), we use the results obtained previously for a sphere (Brunn 1976b) to 
calculate all the material tensors. Since we neglect any hydrodynamic interaction 
between the ends of the dumbbells the translational behaviour of a rigid tridumbbell 
is the same as that of a spherically isotropic body. Thus in sedimentation no change in 
the initial orientation can occur. On the other hand the rotational behaviour is that of 
a transversely isotropic particle. In a simple shear flow only the equilibrium orbits 
C = 0 and C = co exist and the tridumbbell will drift into the orbit C = 0 if its axis 
ratio s is larger than one and into the orbit C = co for s < 1. Qualitatively this agrees 
quite well with the experiments cited above. Since these experiments were performed 
on rods and disks no quantitative agreement is possible: the shape of the particle 
determines the magnitude of the effect owing to its influence on the combination of the 
time constants K(;") and ~ 5 " ) .  

2. Formulation of the problem 

the steady-state creeping-motion equations 
Consider an incompressible fluid of viscosity 7 whose state of motion (U, P) satisfies 

a -.u = 0, ar 
a 
ar - - P + r / V W = O .  

Suppose now that a rigid particle of arbitrary shape (surface X,, volume V,) is placed in 
that fluid. If the fluid is Newtonian and if we denote by udl) the translational velocity 
of some point 0 of the particle and by a(') the angular velocity of the particle with 
respect to a fixed laboratory frame, the inertia-less (u(l), p(l)) fields are known to be 

(2 .2b )  

where dl) denotes the stress tensor +j) with j = 1, which is of the form 

If ro is the instantaneous position vector of 0, measured like r from one point fixed in 
space, the (u(l), p(l))  fields a t  large distances from the particle become 

(2.4a) 

(2 .4b )  
18-2 
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In  these equations 

F(1) = S, d2x n . +), (2 .6a )  

(2 .5b)  G&1) = S, d2x(r - r,) x n . +, 

s$,') = d2x [+(r - r,) n. 7(l)+ in  .&(r - r,) - 46n. @). (r - r,)] ( 2 . 5 ~ )  

are the hydrodynamic force, couple and stresslet with respect to 0 which are exerted 
upon the particle. As far as Fcl) and G&') are concerned we may replace the integration 
over the particle surface by an integration over any arbitrary surface S completely 
surrounding the particle. 

For the special case in which U is a homogeneous velocity field in the sense that the 
rate-of-deformation tensor is identically constant, Fcl), GJ1) and SJl) are known to be 

F(l) = q{tK.(Uo- u&")+~R.(SZ- dl)) +tQ: El, (2 .6a)  

Gf) = ~{(U,-U&~)).~R+'R.(Q-W(~))+~Q: E), (2 .6b)  

S$,') = ~ { ( U , - U & ~ ) ) . ~ Q  +(SL-W(')).~Q +D: E), ( 2 . 6 ~ )  

s, 

with 
s 2 = - - ~ U ,  i a  E=""U+(:U)'], 

2 ar 2 ar 

the angular velocity and the pure strain of the undisturbed flow as seen by an observer 
fixed in space. Since in such a flow the particle will in general translate and rotate in a 
time-dependent manner, the approach velocity U, = U(rJ will in general depend 
upon time (r, = r,(.t)). For convenience, let us introduce the abbreviations 

(2 .8)  

The tensors appearing in (2 .6 )  are material tensors. They uniquely characterize the 
particle since they depend only upon its size and shape. Except for tK all tensore 
depend upon the chosen reference point 0. Apart from the trivial symmetries these 
tensors have (e.g. Dijkl is symmetric and irreducible in its first two and in its last two 
indices) there are also certain 'kinetic ' symmetry relations, some of which have already 
been incorporated into (2 .6)  (note that only six independent tensors appear). The other 
relations are (Hinch 1972) 

- 
0, = u, - up, s2 = SZ - w(1). 

tKij = tKji, 'Rij = 'Rji, Dijkl  = Dklij. (2.9) 

So far, we have assumed the fluid to be Newtonian. If we drop that restriction and 
consider a viscoelastic fluid the (u, p )  fields as well as the state of motion of the particle 
(u,, a) have to be modified even if we use the same undisturbed fields (U, P). It we 
split (u, p )  into ( ~ ( 1 )  + uz), p(1) + p a )  and (u,, a) into (uf) + uf), dl) + con) and consider 
all fields with a superscript 2 as perturbations, a decomposition of the stress tensor of the 

(2.10) form 

with dl) determined solely by the (u(1), p(l)) fields seems appropriate. This decomposi- 
tion will lead to an obvious modification of the force and torque and the terms which 
have to be added to  F(l) and GA2) will be denoted by Fc2) and Gh2), respectively. 

T = "(1) + T(2) = +) + (+) + @) 



Motion of a particle in a second-order Jluid 533 

In  particular, if we employ the model of a second-order fluid we have (Giesekus 
1963) 

a(1)  = 27[Kdl l ) f ( l ) .  f(1) + Kd2)f(2)], (2.11) 

with (2.124 

(2.12b) 
a a 

f(2) = - f a )  + u(1) . - f ( l )  + w(1).  f a )  - $1) . w(1). 
at ar 

In what follows it will prove convenient to consider the ~ h l l )  and ~ 6 ~ )  contributions 
separately, which requires an additional decomposition of the (d2), p(2)) fields into 
( d 2 1 )  + p(21) and a similar decomposition of uh2) and 

2.1. The contributions 
By definition we have 

(2.13) 

where S is any arbitrary surface completely surrounding the particle. But from (2.2) 
we know 

f(1) = E + f(1), 

where f(1) depends only upon the quantities 6,, 8 and E. By virtue of the quadratic 
dependence of ( d 2 1 ) ,  ~ ( 2 1 ) )  upon these quantities Fc21) and Giz1) must therefore be of the 
form 

F(2U = y{ - tK. ~ 6 2 1 )  - tR. ~ ( 2 1 )  + tK(2) : oooo 
+ tC(21) : 0, 8 + tC(22) ; 0, E + tR(2) : afi +tC(31)  i 8 E  +tQ(z) i EE), (2.14) 

Gh2') = y( - ~ $ 2 1 ) .  tR - fR. &1) + rK(2) : 0, 0, 
++C(21):  o o f i + + C ( 2 2 ) i  o o E + + R ( 2 ) :  8 8 + + C ( 2 3 ) ;  8E+rQ(2)i EE}. (2.18) 

The tensors appearing in these equations are again material tensors and as such have 
the same properties as the tensors appearing in (2.6). Apart from tK and tK(2) they 
all depend upon the choice of the reference point 0. 

d%(r - ro) x n. (7'22) + 2ylci2) f(2)), Gh22) = J 

where f(2)is the corotational derivative of f ( l )  [cf. (2.12)]. As such 

s 

( 2 . 1 6 ~ )  

(2.16b) 
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is an irrotational vector field and can be written as the gradient of a scalar field in- 
volving in a known manner (Giesekus 1963) only the (ucl), @)) field. With ~ ( 2 2 )  thus 
determined (2.16a, b )  become 

F(22) = q{-tI(.u&22) -tR.a(22)] 

In  particular, if S denotes a space-fixed surface which momentarily coincides with a 
sphere of infinite radius around 0 the expansion (2.4) is sufficient for the result 

a 
F(22) = 7 { - tK. u ( ~ ~ )  - tR. a(22)> + .i2) Eul) x 51 + E. Ft1)+JBd2xn. 

Gi22) = 7{-u$22) . tR-’R. ,p))  

(2.18a) 
0 { 

a 
+ K & ~ )  Eul) x Uo+ Gy) x Q+2a: (E. S t ) )  + d%(r - ro) x n.--+)] (2.18b) ( 1s at 

to emerge. Recalling the remarks following (2.5) we can rewrite (2.18) as 

~ 2 2 )  = 

Gi22) = T,I( - ~ 6 ~ ~ ) .  tR - ’R . 
- t ~ .  Ui22) - t ~ .  ,(zq + tpp) x 51 + awyat + E . PI)), (2.19) 

+ .i2’{F1) x Oo + GA’) x S2 + aG&l)/at + 2~ : (E. Si”)}, 
(2.20) 

where use has been made of the relation &,/at = uo. Without going into too much 
detail, a few remarks are in order. 

First of all, if the particle is held fixed the term aF(l)/at, the time rate of change of 
F(1) as seen by an observer fixed in space, vanishes and the same is true for aGdl)/at. 
In  particular, if the undisturbed motion is merely a steady translation and rotation 
(E = 0 )  we get 

F(22). U, + Gg2). 8 = 0, (2.21) 

a relation which Caswell(l968) derived from energy considerations. 
On the other hand, if under the action of a constant external force the particle is 

known to translate steadily without rotation in a quiescent Newtonian fluid (cf. 
$4.1) then 

(2.22 a) 

(2.223) 

F(22) = - q{tK . u$22) + tR .0(22)}, 

Gi22) = - 7{u$22). tR + ‘R, a W 4 )  - @)FCU x uL1). 

Consequently, in this situation the concept of material tensors still applies to the 
contributions. It is interesting to see that no terms quadratic in u&l) appear in the 
expression for F22); the modification of the classical Stokes law can therefore have at  
most a ~ $ l l )  term. This result is at odds with the result in Leal (1975), indicating an 
error in Leal’s calculation. 

Second, by arguments entirely analogous to those which led us to (2.14), for a 
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moving particle we should expect time derivatives of U, and &2 to appear in the 
expressions for F(22) and Gi2,). But (2 .19)  and (2 .20 )  tell us that these terms appear 
only indirectly, namely via i W ) / a t  and 8Gi1)/8t respectively, and this is of great 
advantage. For, if W1) and Gil) are known to vanish identically, we have 

F(22) = - q{ tK.  uL2,) + tR. &2)}, (2.23 a )  

Gi2,) = -~{uL~~’.~R +*R.dZ2)} + 2Kd2)€: (E.  Si”). (2.23 b )  

As an example consider a homogeneous transversely isotropic particle which is 
neutrally buoyant. Since particle inertia has to be neglected for reasons of consistency 
the conditions F(1) = 0 and Gh1) = 0 are clearly met,? and it is such particles which we 
shall examine in more detail. 

3. The material tensors for a transversely isotropic particle 
Consider a particle with three mutually perpendicular symmetry planes and let 0 

denote the point of intersection of these three planes. Choosing these planes to be the 
planes Ox, x,, Ox, x, and Ox, x,, we shall call the particle transversely isotropic if two 
of the co-ordinate axes, say Ox, and Ox3, are indistinguishable. Examples are rigid 
tridumbbells with two equal axes (9 4 )  or bodies of revolution with fore-aft symmetry. 
Let e be a unit vector parallel to the symmetry axis (the Oxl axis) and let the com- 
ponents of e in an arbitrary Cartesian co-ordinate system be e j ,  j = 1 , 2 , 3 .  All material 
tensors at  0 must be then expressible as a combination of the tensors aij and eijk and 
an even number of the e j .  A distinction must be made between tensors and pseudo- 
tensors since if a material tensor of rank I with the superscript t is indeed a tensor (of 
parity ( -  1 ) l )  the corresponding quantity with superscript r will be a pseudo-tensor 
(of parity ( -  l)’+l) and vice versa. If we denote by A,,..,,, a transversely isotropic 
tensor of rank I and by Bil...,l a transversely isotropic pseudo-tensor of rank 1 these 
quantities must be of the following form: 

(3 .1 )  

Bij = 0, (3 .2 )  

Aijk = 0, (3 .3 )  

(3 .4 )  

(3 .5 )  

Ai j  = A1(Sii - ei e j )  + A ,  e, e j ,  

B,jk = B, cijk + B2eij, e, ek + B3 eik,  e, e j  + B, ejk ,  e, e,. 

B i j k  = 2B2A$!pvei,q eq ev,  

In particular if Bijk = BSki then (3 .4 )  reduces to 

where the irreducible fourth-rank tensor A(,) is given by (A 6 ) .  

with respect to the indices j and k are 
The tensor and pseudo-tensor of fourth order which are symmetric and irreducible 

B,, = 0,  ( 3 . 6 )  

A i j k ,  = A,[aij + 8,k Sj, - 28, ‘25 ek] + A,[Sa 8jk  - 3 8 , ~  ek ej] 
e, ej + Sj, ei ek - 2ei ej ek e,] 

+ A,[ajk e, e, - 3ei ej  ek er] +AB[& ek e, + &ik ej e, - 2ei ej ek e,]. (3 .7)  
t Note that external influences (Fa, Gg) do not depend upon ~ h ~ ~ )  or ~ 6 ~ ) .  Consequently we have 

to set F“’ =-1 -Fa, Pa’= 0 and similarly Gf) = - G& GL’) = 0. 
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(3.3) 
(3.5) 
(3.3) 
(3.5) 
(3.8) 
(3.7) 

(3.9) 
(3.10) 

Coefficients 

A ,  = K , ,  

A ,  = R,, 

A ,  = K, ,  

A ,  = R,, 

B, = Q 

B, = o:), 
B3 = C;”, 

- 

- 

- 
B, = CL’) 
B4 = Cc)  

- 
B - K(2) 

2 -  

B - R(2) 
2 -  

A ,  = D,, A ,  = D,, A,  = D, 
A ,  = Gy’, A ,  = Ck2) 
A, = C$”, A, = C&”, A, = Cf) 

TABLE 1 

In  particular, if we also want symmetric irreducibility with respect to the indices i and 
1 then 

Aajk = A,[&. 81, + 8ik 8,j - 28jk ei el - 2 4 ,  e j  ek + 6ei e j  ek el] 

+A,[& 8jk - 38jk ei el - 3Si1 el ek + 9ei e j  ek el] 

+ A3[alk ei e j  + Sjl ei ek + 8ik el e j  + aij el ek - 4ei e j  ek ei]. (3 .8)  

This tensor automatically satisfies Ailjk = Ajkil. 
On the other hand we have 

Aijklm = 0, (3 .9)  

Bijklm = €ipv ev ev{2Bl[A$!, p,(81m - 3el em) + A$$, p,c8jk - 3ej ek ) l  

+ 2B,[A$,’,, 8km + AS! pv 8jm - 4 4 2 ,  pv e j  ek 

+ pv &kl+ Ak%, pv &jl - 4A9, pv el 

+ 2B3 ev e,{Aji! pv E2cipv el em - aim ~ l p u  - ail cmpuI 

+ pv L2€ipv ek e j  - 8ike jpv  - &ij ekpul>, (3.10) 

provided that this tensor is symmetric and irreducible in the indices j, k and I ,  m and 
has the property Bijklm = Bilmjk. 

With respect to the centre of symmetry we thus obtain the material tensors in 
the form given in table 1. This tells us in conjunction with (2.23) that the centre of 
symmetry of a transversely isotropic particle will move with the local fluid velocity 
if the particle is freely suspended. This, however, was to be expected. 
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In  passing we note that the number of independent coefficients appearing in the 
material tensors for a particle in a second-order fluid reduces in general from 27 to 6 in 
going from a transversely isotropic particle to a spherically isotropic one. For a sphere 
of radius a another one vanishes (Cll))  and the remaining five are (Brunn 1976 b )  

(3.11 a, b )  

(3.1 1 c )  

Ci2) = - $Chg) = # ) ,  Ci3) = - $C&3) = - 2na3~dll). (3.11d, e )  

Thus a spherically isotropic particle freely suspended in the fluid simply moves with 
the fluid, i.0. uo = U, and o = S2. 

K,, = KL = 67ra, R,, = R, = 87ra3, 

D, = -go2 = +07ra3, 

4. The behaviour of a transversely isotropic particle in a gravitational field 
(quiescent fluid) and in a simple shear flow 

In  order to draw some conclusions about the behaviour of transversely isotropic 
particles submerged in a viscoelaetic fluid we shall consider two examples: translation 
through a quiescent ambient fluid under the action of external forces (gravity) and 
the rotation of a neutrally buoyant particle in a simple shear flow. 

4.1 .  The terminal state of a sedimenting particle 

Let F” = F g ,  8.8 = 1, (4.1) 

denote a given external force. If the quiescent fluid is Newtonian, a transversely 
isotropic particle will then translate steadily without rotating, i.e. 

u p  = (PIqK,, K J  {K,,  8 + w, - K, , )  8 * eel, ( 4 . 2 ~ )  

o ( 1 )  = 0. ( 4 . 2 b )  

Consequently, the modifications to the state of motion of the particle in a viscoelastic 
fluid are governed by the equations 

0 = -$K.u&~),  (4.3~) 

(4 .3b)  

up’ = 0, ( 4 . 4 ~ )  

O = - 7  ‘ R . d 2 ) +  2qK(2)(~&1) x e )  (u&l).e) + K & ~ ) F ~  x udl). 
The solution is 

Owing to the rotation the orientation e of the particle will change and the rate of change 
as seen by an observer fixed in space is 

d = w x e .  (4.5) 

If e(0) is the initial orientation it becomes apparent from (4.5) and (4.4) that e will 
always stay in the plane containing e(0) and Q. With 8 the angle between e and Q, i.e. 
COB 8 = e.Q, integration of (4 .5 )  yields 

(4.6) tan 8 = tan 8, e”t, cos 0, = e(0) .  0. 
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Consequently the orientation changes until it becomes either parallel ( A  < 0) or 
perpendicular ( A  > 0) to the direction of the external force. In either of the final states 
the particle translates in the direction of the force without any rotation. Since K,,, K L  
and RL are known to be positive it is the sign of the coefficient K(2)+&~J2) (KL-KI , )  
which determines the ultimate terminal state. For long slender bodies this coefficient is 
negative since a recent calculation by Leal (1976) predicted the parallel state to be the 
stable one. 

4.2. Rotation in. simple shear 

The state of motion of a homogeneous transversely isotropic particle freely suspended 
in a viscoelastic fluid is characterized by the equations 

u, = u,, 0 = 0(1) + 0 ( 2 ) ,  (4.7) 

with ( 4 . 8 ~ )  

and cd2)  s rR)--l. (‘R(2): +rC(23)i f iE  +gQ(2)i EE + (2~f ) /7 )  B: (E. Sil))>. (4 .8b)  

Thus, although &).e = 0 (i.e. as far as the rotation around the symmetry axis is 
concerned the particle simply rotates with the fluid) the other components of d2) do 
not vanish. This implies, by (4.5), that the orientation changes in a manner which 
differs from the corresponding change in a Newtonian fluid. Explicitly we have 

4 = S2 x e -  (2Q/R,) ( (6  - ee) el: E - (6  - ee). E-[(H2 S +Hl ee) el: E, (4.9) 

dl) = S2 +- (2Q/BL) e .  E x e 

where wo have introduced the abbreviations 

(4.10b) 

So far, no assumptions have been made about the flow field. In  order to solve (4.9), at 
least approximately, let us consider a simple shear flow. Choosing a space-fixed 
Cartesian co-ordinate system such that e, denotes a unit vector in the gradient direc- 
tion and ey a unit vector in the flow direction, we have 

(4.11) 

where q is the shear rate. With O the angle between e and the vorticity axis e, and q5 the 
angle between e and the direction of the shear, i.e. 

e = e, sin 8 cos q5 + e,sin Osin q5 + e, cos 0, (4.12) 
the orbit equations 

(4.13a) 

E = tq(e, ey + ev e,), S2 = *q es 3 

4 = $q[l+ (2Q/R,) (1 - 2 cos2$)] + +q2Hl sin2 Osin q5 cos q5( 1 - 2 cos2#), 

8 = - (2Q/RL) q sin O cos 8 sin q5 cos q5 - qz[[tH2 + HI sin20 sin2q5 cos2q5] sin 8 cos 8 
(4.13b) 

follow directly from (4.9). From (4.13b) we conclude that a particle with its symmetry 
axis in the plane of the shear will not leave that plane while a particle with its axis 
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parallel to the vorticity axis will always maintain that orientation. Furthermore, for a 
spherically isotropic particle, for which Q = Hl = H2 = 0, we get 4 = ijq in accordance 
with the experimental results of Gauthier et al. (1971) for a spherical particle. 

Before trying to integrate these equations let us recall that even for a Newtonian 
fluid the behaviour of the orientation of the particle depends critically upon the sign 
of the coefficient I2Q/R, I - 1. Since for the important case of a spheroidal particle this 
quantity is negative and related to  the particle axis ratio s via 

(4.14) 

we shall confine our attention to that situation. For an arbitrary transversely iso- 
tropic particle (4.14) is interpreted as the definition of an equivalent axis ratio in terms 
of which the Newtonian solution to the orbit equations reads 

tan + = s tan (2n t /T) ,  ( 4 . 1 5 ~ )  

tan 8 = sC(l)/(sin2+ + s2 COS~+)', (4.15 b )  

with T = ( 2 / q ) n ( ~ + s - l ) .  (4.15 c )  

Thus the symmetry axis of the particle rotates about the vorticity axis,? the period of 
rotation being T (Jeffery orbits). The initial orientation (at t = 0) uniquely specifies 
the orbit constant C(l), but has no effect on T .  

On the basis of the Newtonian result let us introduce new variables (7, C) defined 

( 4 . 1 6 ~ )  
by the relations tan+ = s tanr ,  

tan 8 = sC/(sin2+ + 82 cos2+)&. (4.16 b )  

If the definition (4.14) is used and the transformation (4.16) is applied to the orbit 
equations the variables r and C satisfy 

2n (s2 sin2 7 - cos2 7 )  cos 7 sin 7 

T 2 1 + C2(s2 sin2 7 + cos2 r )  ' 
q2 i = - + H l - C 2  

1 +s2 C = -+q2CH2-- 
sin2 7 co92 7 

2 q2H1c3 1 + ~ 2 ( s 2  sin2 7 + cos2 7 )  

(4.1 7 a)  

(4.17b) 

It is interesting to see that C is no longer constant. In  order to demonstrate that C 
does not merely fluctuate about its initial value but rather shows a systematic drift, 
let us start from an arbitrary initial state, say 

7 = 0 ,  C = C ,  at t = 0 ,  (4.18) 

and look at the quantities 7 ( 2 ) ( t )  and G2)(t) defined by 

7(t )  = (2n/T)t+7(2)( t ) ,  C ( t )  = Co+C(2)(t). (4.19) 

-t If lZQiR,I > 1, (4.14) furnishes an imaginary s, say is*. Replacing s in (4.15) by ia* we get 

tan fi = s* tanh [ 8 * q t / ( ~ * ~  - l)]. 

tan 8 = s*C'l'/(s*z coszfi -sin*#). 

This is no longer periodic and the orientation ultimately attained is 

fi = tan-%*, 8 = in if s* 1, i.e. rt 2QIR, < - 1. 
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Clearly (T@), (32)) willvanish for fixedt if IpH,I --f 0,  i = 1,2,  or for fixed IqH,I, i = 1,2,  if 
t --f 0. Consequently we can always find a time t* > 0 such that for all times before t* 
the orientational state of the particle deviates only slightly from the Newtonian state 
at the same time. This allows us to approximate the quantities (7, C )  on the right-hand 
side of (4.17) by ((2n/T)t ,  C,). The approximate forms of these equations may be 
readily integrated, with the result 

1 +~~+2(~C,)~~(l+C~[c0s~((2n/T)t)+s2sin (( 277’T)t)1)], ( 4 . 2 0 ~ )  
(1 - 8 2 )  c; 1 +c; + 

+ .L. 477 (E’) 1 - 8 2  H~ Q~Tc, (a sin ($ t )  

This is valid for 0 < t < t*, where t* depends strongly on what we mean by a small 
deviation from the Newtonian state. Since the condition for a rheologically slow flow is 
IqHJ < 1, i = 1, 2,  we imagine this quantity to be so small that even after a complete 
rotation the orientation of the particle will be quite close to the initial orientation. Thus 
t* will be of the order of T .  

Since d2)(T) = 0 we conclude that if the period of rotation 9 is determined by 
measuring the time needed for the particle to perform a complete rotation around the 
vorticity axis then 

9 = T .  (4.21) 

For spheroids with very large or very small axis ratio s in a Newtonian fluid, where the 
calculated T exceeds the experimentally determined period T,, one replaces in (4.15) 
the true axis ratio by an apparent axis ratio s, which is calculated from the period 
measured, i.e. 

T,  = (27r/q) ( S , + S , l ) .  

Since 9 = T the apparent axis ratio remains unchanged from its value calculated for a 
Newtonian fluid. In  other words a graph of 8, as a function of the true axis ratio s 
should show no non-Newtonian influence. This agrees precisely with the experimental 
results of Gauthier et al. (1971). 

As a further consequence of (4.21) we give a result following from (4.20b): 

C(T) -Co  = &q2T 
CO 

Since Hl and H, are independent of the orientation of the particle the expression in the 
curly brackets will in general be non-zero. This implies that the orbit will drift 
systematically until a preferred equilibrium orbit is reached (C(T) = C,). From the 
results listed after (4.13 b )  we see that the orbits C = 0 and C = co are two equilibrium 
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FIGURE 1. The orbit C = C* for s = 2. The shaded regions are physically inadmissible. 

orientations for every transversely isotropic particle. Equation (4.22) furnishes a 
third preferred orientation C*, 

(0 if HZ = 0, I 

provided that for H, + 0 
(4.233) 

If Hl/H, does not lie in that range C* becomes imaginary and has to be discarded. This 
can also be seen from figure 1, which has been drawn for s = 2. Putting C = C*(1 +a) 
with 1.1 < 1 in (4.22) reveals that C* is stable if H, < 0. By the same token the orbits 
C = 0 and C = co will be stable against small perturbations if 

respectively. Consequently, the orbits C = 0 and C = C* either coincide (H, = 0) or 
cannot both be stable. This implies that any transversely isotropic particle can have at 
most two stable equilibrium orientations. The experimental results of Gauthier et al. 
(1971) indicate that long rods as well as thin disks have only one stable equilibrium 
orientation (C = 0 and C = CQ, respectively). There is no apriori reason to assume that 
this will generally be the case, so that one has to look at specific examples. To this end 
we shall consider a very simple kind of transversely isotropic particle, namely a rigid 
tridumbbell with two equal axes. In  this way we also get an answer to the question of 
which will be the direction of the orbit drift. 
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FIGURE 2. An axisymmetric tridumbbell. 

5. Rigid tridumbbell 
Two equal spheres of radius a joined by a thin rigid rod of negligible hydrodynamic 

resistance and with a centre-to-centre spacing between them of 21 constitute a dumb- 
bell of length 21. If e denotes a unit vector parallel to the axis of the dumbbell the 
sphere centres have the co-ordinates 

- 

I-,,, = f l e  

relative to the centre of symmetry 0. A rigid tridumbbell consists of three dumbbells 
connected at  their individual centre’s of symmetry such that the co-ordinates of the 
sphere centres are 

where the subscript i refers to the ith dumbbell. We shall consider only an axisymmetric 
tridumbbell characterized by the fact that two dumbbells, say 2 and 3, are of equal 
length, i.e. 

No confusion can therefore arise if el is called e (see figure 2 ) .  

we must also neglect their contribution to the torque, i.e. 

qIl2 = f li e,, e, . ej = Sij, i, j = 1 , 2 , 3 ,  (5.2) 

1, = la. (5.3) 

As long as we can neglect any hydrodynamic interaction between individual spheres 

(5.4) 
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Employing (3.11) (without R,,, R,, D, and D,) in the transformation laws listed in 
appendix A and using the identity 

8-ee  = e,e,+e,e, (5.5) 

yields the desired material tensors. The non-vanishing coefficients are 

If all terms containing only the length parameter a-the terms K,,, EL, Ci') and 
Cd2)- are divided by 3 and I ,  is set zero the results for a dumbbell are obtained while 
division by 2 and putting I ,  = 0 furnishes the results for a bidumbbell. Since hydro- 
dynamic interaction among the spheres has been neglected it is not surprising to find the 
translational behaviour of the tridumbbell to be that of an isotropic particle. This will 
still be true even if the restriction (5.3) that two axes be equal is dropped. As a 
consequence such a sedimenting tridumbbell could show no tendency to rotate but 
would settle by maintaining its initial orientation. 

On the other hand the rotational behaviour of a rigid tridumbbell is always that of a 
transversely isotropic particle. In  a two-dimensional shear flow of a Newtonian fluid 
the axis of revolution rotates periodically. The equivalent axis ratio, which appears in 
the equations for a Jeffery orbit and which is defined by (4.14), coincides with the 

(5.7) 
true axis ratio, i.e. s = z1/1,. 

For a non-Newtonian fluid a drift towards the preferred orientations must occur. Since 

the restriction (4.23b) is violated, so that only the two equilibrium orbits C = 0 and 
C = 00 exist. 

On experimental grounds one expects the relation? 

with 

so that H, is always positive for s + 1 while H, is positive for s > 1 and negative for 
s < 1. Looking a t  (4.22) it is thus readily checked that for 0 < C, < 00 

C(T) 3 C, if s 5 1. (5.10) 

This implies that a rigid tridumbbell whose axis ratio s is larger than one drifts towards 
the orbit C = 0 (axis of symmetry parallel to the vorticity axis) while for s < 1 the 

t This is the mathematical way of expressing the experimental fact that the second normal- 
stress difference is non-positive in contrast to the positive first normal-stress difference and that 
the latter is much larger in magnitude than the former. 
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FIGURE 3. The 

0 0.5 1 

ti T 
drift of the orbit constant during one rotation of a rigid tridumbbell 

C(0) = 2, - 1 -=g p = p (@+ & K Y ’ )  < 0. 
of axis ratio 8. 

drift will be towards the orbit C = co (axis of symmetry in the plane of the shear). The 
more anisotropic the tridumbbell is, i.e. the more the quantity $(s +s-l) deviates from 
one, the more pronounced the drift will be. This can also be seen from figure 3, which 
shows the curve C = C ( t )  as calculated from (4.20b). Consequently it is no surprise to 
find that experiments are usually carried out for particles with s % 1 and s < 1, 
respectively. For long cylindrical rods (s > 1) and thin disks (s < 1) the experimental 
results obtained at  small shear rates by Gauthier et al. (1971) agree qualitatively with 
our theoretical result. That no quantitative agreement is possible may be demonstrated 
as follows. 

If we let s --f 03 the rigid tridumbbell becomes a dumbbell with all, z 0. The orbit 
equations (4.13) then reduce to 

4 = q cos2 4 -pq sin28 sin 4 cos $(i - 2 cos2$), (5.1 1 a )  

8 = q sin e cos e sin $ cos 4 + 2pq sin3 e cos e sin2 $ C O S ~  4, (5.11 b )  

with p = q(KO (2) + 4 K 0  1 (11) )‘ (5.12) 
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These equations are precisely the equations Leal (1975) obtained for slender, rod-like 
particles provided that /3 is replaced by M ~ ( K / , ~ )  + &@)).t Since 11.1 is a pure number 
(depending only upon the shape of the body surface) all particles which can be treated 
by the methods of slender-body theory (e.g. long cylindrical rods) give rise to the 
combination /ci2) + +~Lll), while for the dumbbell the combination ~ i ~ )  + $/c/,l1) results. 
Consequently no quantitative agreement between the theoretical predictions for a 
particle shaped like a dumbbell (or a tridumbbell) and the experimental results is 
possible. This contrasts with the behaviour in a Newtonian fluid, where the results 
depend only upon the axis ratio s. 

t In Leal’s notation M = - 3MJ16 In 6 ,  where E is the ratio of a characteristic particle thick- 
ness to the particle length and Ml = M1(e). Since MI > 0 in the limit E + 0 the quantity 

is, like /3, negative. 
$ In  order to simplify the notation we denote by AiB the scalar product in which the last 

index of A is contracted with the kth index of B (AiB = A.B) .  Also, by At’,’ we mean the 
tensor whose Cartesian components are obtained from those of A by interchanging the i th and 
j th indices. If this interchange concerns the last two indices, we shall merely write At. 

Mq(@’ + &crl’) 



Appendix B. The .h2) material tensors 
Although the concept of material tensors in general'will not be applicable to  terms 

involving K ; ~ )  [time derivatives appear in (2.19) and (2.20)] there are quite a few cases 
where this concept does work. Besides the obvioussituation of a particle at rest, we have 
listed in $2  two more of these exceptional cases. There no decomposition of the problem 
into ~ & l l )  and K & ~ )  contributions is necessary, since the material tensors will split up into 
such terms. If we retain for the K & ~ )  tensors the same notation as in (2.14) and (2.15) 
respectively, the following relation between the K & ~ )  tensors and the Newtonian material 
tensors results: 

(B la-c) 

(B 1 4  

(B 1 4  

(B I f )  
(B I d  

(B 1h) 

(B 1.i) 

(B 1 w  

(B 1 4  

tK(?' afk = 0 f tC(Z1) ajk = - K & ~ ) E ~ ~ ~ ~ K ~ ~ ,  tC(22) ijkr - - K ( 2 ) A ( 2 )  j k , i p  tK $, 

tf$& = -1 2K0 (2) [Eiji:Rpk f %kptRpj1, 

tC(23) ajkl - - K(2)  o [-Ed:Qpjk +A$;i:R,dI, 

tQ\;)wm = 4Kh2)[A$Z;i/ltQ/Jm f Aj2, i:QpjkI> 

r K ( 2 )  ajk - - - K&~)A$, p v  eiP:KqY, 
rC() ajk = - K&2)[eik:Rpj f E i j : R k p l ,  

rB(.? v k  = -,@)A(?) 9 k . p  8 ip[Rqv' 

rC(23) ajkl - - - K!j2)[eil/Qpjk + 2A$",', pve ip ;Qlvq l ,  

rC$z)z = - K ~ ) [ E .  alp tQ pjk . + ZAR, y v  ~ ~ ~ g t Q ~ ~ ~ ] ,  (B l i )  

(2) D 
rQ(i2i)k~m = K$?Eipv[Ajk, vq qNm +A%,vq Dqpjkl* 

Thus, while there is never a K & ~ )  contribution to tK(2), there is also no K & ~ )  contribution 
totR(2) and to rC(21) for all those particles for which translational and rotational motion 
is uncoupled in a Newtonian fluid. In  particular, this is true for transversely isotropic 
particles, for which the tensors given by (B la-Z) are of the same form as the ones 
listed in table 1 in $3.  This time the coefficients appearing there are 

(B 2a-c) CI1) = - K & ~ ) K ~ ,  CL1) = K ; ~ ) ( K ,  - Kll), Qi2) = - 2 "C(2) 2 = 4 K ( ~ )  0 K L ,  

- #(Ji') = &Ki2)(KII - KL), K(2) z= - 1 K (  2) ( K,, - K J ,  R(2) = - ~ K ( ~ ) ( R  2 0  I/ - R J ,  
(B 2d-f 1 

(B 2g) 4 3 )  = - 1c(3) = - (33 )  = l Q ( 3 )  = - l c ( 3 )  = K L ~ ) Q ,  
2 2  3 2 4  2 5  

QI2) = K ~ ~ ) ( D ~ +  #D2), QP) = - & K ~ ~ ) D ~ .  (B 2 h, i )  
This can serve as an alternative check on the correctness of (4.4) and (4.9) respectively. 
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